Cauchy–Kovalevskaya Extension Theorem in Fractional Clifford Analysis

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cauchy-Kovalevskaya Extension Theorem in Discrete Clifford Analysis

Discrete Clifford analysis is a higher dimensional discrete function theory based on skew Weyl relations. It is centered around the study of Clifford algebra valued null solutions, called discrete monogenic functions, of a discrete Dirac operator, i.e. a first order, Clifford vector valued difference operator. In this contribution, we establish a Cauchy-Kovalevskaya extension theorem for discre...

متن کامل

Gerbes, Clifford Modules and the Index Theorem

The use of bundle gerbes and bundle gerbe modules is considered as a replacement for the usual theory of Clifford modules on manifolds that fail to be spin. It is shown that both sides of the Atiyah-Singer index formula for coupled Dirac operators can be given natural interpretations using this language and that the resulting formula is still an identity.

متن کامل

An extension of the Wedderburn-Artin Theorem

‎In this paper we give conditions under which a ring is isomorphic to a structural matrix ring over a division ring.

متن کامل

Clifford Theorem for real algebraic curves

In this note, a real algebraic curve X is a smooth proper geometrically integral scheme over R of dimension 1. A closed point P of X will be called a real point if the residue field at P is R, and a non-real point if the residue field at P is C. The set of real points, X(R), will always be assumed to be non empty. It decomposes into finitely many connected components, whose number will be denot...

متن کامل

Friedrichs Extension Theorem

Some notes on the Friedrichs Extension Theorem, for MATH 7130, Spring 2010.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Analysis and Operator Theory

سال: 2014

ISSN: 1661-8254,1661-8262

DOI: 10.1007/s11785-014-0395-x